
GTA: GPU-Accelerated Track Assignment with Lightweight Lookup
Table for Conflict Detection

Chunyuan Zhao1, Jiarui Wang1,2, Xun Jiang1, Jincheng Lou1, Yibo Lin1,3,4∗

1 School of Integrated Circuits, Peking University, Beijing, China
2 School of Computer Science, Peking University, Beijing, China

3 Institute of Electronic Design Automation, Peking University, Wuxi, China
4 Beijing Advanced Innovation Center for Integrated Circuits

{zhaochunyuan, xunjiang, jinchenglou}@stu.pku.edu.cn, {jiaruiwang, yibolin}@pku.edu.cn

Abstract—Routing remains one of the most computationally intensive
stages in VLSI physical design. Track assignment serves as a critical
bridge between global routing (GR) and detailed routing (DR), offering
more accurate routability estimation than GR while providing an
initial solution for DR. However, existing approaches exhibit two key
limitations: (1) Most track assignment methods are not aware of design
rules, which makes they are unable to provide accurate congestion
analysis and high-quality initial solution for detailed routing. (2) Current
algorithms are exclusively designed for CPU architectures, which leads
to limited parallelism and long runtime. This paper presents a novel
GPU-accelerated track assignment framework that holistically addresses
these design rules. Our implementation demonstrates significant im-
provements over the state-of-the-art detailed router TritonRoute-WXL,
achieving 20× faster runtime and 25% reduced cpu peak memory usage,
while maintaining competitive detailed routing quality. The proposed
framework effectively bridges the gap between computational efficiency
and design rule awareness in modern VLSI routing.

I. INTRODUCTION

Routing plays a critical role in the design flow of modern very-
large-scale-integrated (VLSI) circuits. With the increasing number
of design rules and the complexities associated with advanced
technology nodes, the routing solution is significantly influenced
by these design rules, including the parallel run length spacing rule,
corner-to-corner spacing rule, and cut spacing rule.

As shown in Figure 1, a typical routing flow takes the result after
placement as its input. It performs global routing, track assignment
and detailed routing. Global routing (GR) is typically used to obtain
an approximate solution for routing resource utilization during the
early design stages (i.e., placement). As shown in Figure 2(a), the
typical global routing stage partitions the routing region into a set
of GCells (global cells) and determines global routes for each signal
net, aiming to minimize total wirelength, the number of vias, and
overall congestion. The global routing solution serves as a guide
for the detailed routing stage, providing a sound search region for
each net. This stage is commonly employed to estimate routing
resource utilization and design rule violation (DRV) distribution
during early design phases, such as placement [1]–[3]. However,
there is a considerable gap between the routing resource utilization
predicted by global routing and that achieved by detailed routing.
This discrepancy arises because global routing does not take specific
design rules into account and relies solely on congestion as an
estimate for potential design rule violations. Moreover, without
a robust initial solution, detailed routers often struggle to find a
high-quality routing solution within an affordable runtime, further
exacerbating the challenge.

To bridge the gap between global routing and detailed routing,
track assignment was introduced [4] as illustrated in Figure 1. This

∗Corresponding author

LEF/DEF after
Placement

Global
Routing

Track
Assignment

Detailed
Routing

LEF/DEF after
Routing

Fig. 1 A typical routing flow.

Layer 2

Layer 1

GCell global routes

(a)

track 0

track 3

track 1
track 2

GCell 0 GCell 3GCell 1 GCell 2

irouteGCell track

Panel

(b)

Fig. 2 (a) GCell grid and global routes, (b) panel, tracks and iroutes.

stage has proven to be an effective way to address specific design
rules and other issues related to detailed routes, such as coupling
effects, timing, and yield optimization [5]–[9]. Track assignment
provides more accurate estimates of routing resource utilization and
design rule violations at the early design stage and serves as a strong
initial solution for detailed routing. As shown in Figure 2(a), we
refer to long straight paths in the global routing solution as iroutes
(intervals of global routes) and a full row or column (depends on the
preferred direction) of GCells as panel. In a typical routing flow, we
need to place most of the wire connections on tracks. Figure 2(b)
shows an example of a panel with 4 GCells, and there are 4 tracks
to place iroutes in it. The track assignment stage assigns each iroute
to a routing track within its corresponding panel, considering both
local constraints and design rules. Figure 3 shows an example of a
track assignment solution for two nets.

Track assignment can be roughly categorized into overlap aware
track assignment and design rule aware track assignment. Overlap
aware track assignment method only cares about wirelength, the
overlapping length between an iroute and a blockage and the over-
lapping length between an iroute and another iroute. Many previous
work have tried many methods to minimize the wirelength cost and

Pin 1

Pin 2

Pin 3

Pin 4

Fig. 3 An example of a track assignment solution for two nets (pin
1 → pin 2, pin 3 → pin 4).

overlapping length cost. [4] uses a weighted bipartite matching
algorithm with a look heuristic strategy, achieving significantly
reduced total routing time with acceptable quality degradation.
[10] accounts for both global and local nets, using a negotiation-
based approach to reduce the total cost. This negotiation-based
strategy is widely used in other optimization problem such as global
routing [11]–[14]. [15] incorporates more detailed connections
between iroutes, focusing on via and pin connections to improve
routability estimation. [16] uses a simulated annealing framework
to solve the optimization problem. [17] frames the overlap aware
track assignment as an integer linear programming (ILP) problem,
solving it with an ILP solver and achieves less overlapping cost
than methods above. It also applies a two-stage partition strategy to
reduce the scale of the ILP problem with little quality degradation,
but it still suffers from much longer runtime. Design rule aware
assignment method is aware of specific design rules such as end-
of-line spacing rule and cut spacing rule. Instead of overlapping
cost, design rule violation cost matters. [18] considers via locations
and routing resource utilization occupied by vias, providing a more
accurate resource utilization estimate than commercial global routing
and other academic track assignment frameworks. [19] represents
the state-of-the-art academic router with a comprehensive global
routing, track assignment, and detailed routing flow. They consider
metal short rule, parallel run length spacing rule, and cut spacing rule
during the track assignment stage, resulting in a high-quality detailed
routing solution. However, these two kinds of track assignment have
their own weakness respectively. Overlap aware track assignment
is not aware of any specific design rule, which leads to a weak
correlation with actual design rule violation and routing utilization
in detailed routing. Design aware track assignment has a better
correlation but it suffers from low runtime efficiency.

To accelerate electronic design automation (EDA) flow, GPU is
introduced into many design stages due to its massive parallelism
and high memory bandwidth. Many GPU-accelerated algorithms
have demonstrated enhanced efficiency without sacrificing quality
in various EDA applications [3], [20]–[27]. Historically, track as-
signment algorithms were designed for CPUs, which could only
handle a limited number of threads on CPU platforms.

To handle a broader range of design rules and leverage GPU
computational power, we propose GTA, a GPU-accelerated track as-
signment method that constructs a GPU-friendly lightweight lookup
table and utilizes heterogeneous GPU computing platforms for fast,
design rule-aware track assignment. This novel approach not only
accelerates the track assignment process but also improves the
quality of the initial solution for detailed routing. We summarize
our main contributions as follows:

• We introduce a new GPU-friendly lightweight look-up table
based on the GCell grid to enable efficient conflict detection,
significantly improving runtime.

• We propose a maximal independent set-based batching strategy,

Metal 1 Metal 2

Violation Length

spacing required

spacing

Violation Length

Metal 1 Metal 2

(a)

Metal 1 Metal 2

Violation Length

spacing required

spacing

Violation Length

Metal 1 Metal 2

(b)

Fig. 4 Example of design rule violation lengths for (a) the metal
short rule and (b) the parallel run length rule.

which achieves significantly higher parallelism compared to
naive inter-panel parallel strategies, leading to faster processing.

• To the best of our knowledge, we have developed the first
GPU-accelerated track assignment framework which is highly
scalable and can efficiently handle large designs. Compared
to TritonRoute-WXL [28], our method achieves approximately
20× speedup in track assignment runtime, 25% CPU less
peak memory usage. Meanwhile, our detailed routing quality
is comparable or even better than [28].

The remainder of this paper is organized as follows: Section II
reviews the background and formulates the problem addressed in our
work. Section III provides a detailed explanation of our proposed
track assignment methods. Section IV validates our approach with
comprehensive experimental results. Section V concludes the paper.

II. PRELIMINARIES

In this section, we introduce the track assignment problem and
provide an overview of the basic concepts involved in the process.

A. Design Rule Checking

Among the design rules defined in ISPD-2018 [29] and ISPD-
2019 [30] benchmarks, we choose fundamental design rules ad-
dressed by our track assignment framework as follows:
• Metal short rule: A wire metal or via metal cannot overlap with

any other metal object, such as pins, obstacles, wire metal, or
via metal from other nets.

• End-of-line (EOL) spacing rule: A metal edge shorter than the
defined eolWidth must maintain a spacing of at least eolSpace
beyond the EOL to either side, with a distance less than
eolWithin.

• Parallel run spacing rule: Two metal objects with a parallelRun-
Length must maintain a specified spacing, which is dependent
on their width and parallelRunLength.

• Cut spacing rule: Two vias located on the same cut layer must
maintain a spacing between each other.

In our track assignment formulation, we use the design rule violation
length to quantify the extent to which a track assignment solution
violates the design rules. The design rule violation length refers to
the length of the region where design rule violations occur, measured
along its preferred direction. Figure 4 provides an example of design
rule violations for the metal short rule and parallel run length rule.

B. Track Assignment Formulation

As shown in Figure 2(a), in a 3D multi-layer design, the layout is
partitioned into small rectangular regions known as GCells, defined
by a grid of horizontal and vertical lines. During the global routing
stage, the pins of signal nets are mapped to their corresponding
GCells, and the global router generates a GCell-level routing solu-
tion, referred to as global routes. These global routes are also termed

iroutes as described in previous work [4]. Due to manufacturing
constraints, each metal layer has a preferred routing direction (either
horizontal or vertical), and routing wires must follow this direction
to ensure manufacturability. A contiguous row or column of GCells
aligned with the preferred routing direction is referred to as a panel.
Within each panel, a limited number of routing tracks are available
for wire placement. The track assignment process determines the
specific track for each global route, optimizing objectives such as
minimizing wirelength and avoiding DRVs. The track assignment
objective is thus formulated as:

minα×WL+ β ×DRV L+ γ ×A (1)

where WL represents the estimated total wirelength, DRV L de-
notes the total length of design rule violations, such as metal overlap
length, and A is an extra penalty term for detailed routing, which
will be introduced in Section III.

C. Negotiation-based Track Assignment

The negotiation-based method is a widely used approach to solve
routing and track assignment problems, and it has been proven to
be both efficient and effective [10], [11], [13]–[15], [31], [32].

A typical negotiation-based method can be divided into two
stages. The first stage, known as the initial routing or initial
assignment, finds a initial solution. The second stage iteratively
refines this solution to improve upon the initial assignment. In this
refinement stage, the algorithm rips up routing paths with overflow
or iroutes that violate design rules, and then it re-routes or re-
assigns them with reduced overflow or fewer violations. In different
iterations, the objective function assigns varying weights to overflow
or violations, and the routing or assignment order may change to
address different issues. Some studies also incorporate a history cost
method during the refinement stage to help escape local optima.

Our proposed track assignment approach consists of three stages:
database construction, initial assignment, and rip-up and re-assign.
In the database construction stage, we build a lightweight lookup
table to identify iroutes and blockages that may result in violations
for a specific iroute. During the initial assignment stage, we assign
each iroute primarily by considering wirelength, which provides an
initial assignment solution. In the rip-up and re-assign stage, we
select iroutes with violations and dynamically re-assign them in
order to reduce the violations effectively.

III. ALGORITHM FRAMEWORK

A. Overall Flow

Figure 5 illustrates the overall flow of our track assignment
framework. The process begins with reading the pin access results
and the global routing solution. Subsequently, we slice the guides
and retrieve the pin access, the panel, the start GCell, and the end
GCell for each iroute. Following this, we construct our proposed
lightweight lookup table. Once these preprocessing is completed,
our algorithm proceeds to the initial assignment stage, followed
by the DRV reduction stage. We use the proposed unified as-
signment algorithm in Section 6 to do initial assignment and re-
assignment. The main difference of initial assignment and rip-up
and re-assignment lies in different weights α, β, γ in Equation 1
and different assignment order strategy, which will be explained in
Section III-D. Finally, the track assignment results are passed to the
detailed router to produce the final detailed routing outcome.

For better understanding of our framework, we first introduce
our proposed lightweight lookup table construction in Section III-B.
Then we explain the details of two algorithms powered by our

Pin Access
Results

Global Routing
Results

Iroute Extraction

Iroute Extraction

Initial Assignment

DRV Reduction

N

Track Assignment
Results

Y

Preprocessing

Alg. 1-2 (CPU)

Lightweight
Lookup Table
Construction

Initial
Assignment

Alg. 3-6 (GPU)

Rip-up and
Re-assignment

Alg. 3-6 (GPU)

Meet
Termination

Condition

Fig. 5 The flow of our proposed GTA algorithm framework.

lightweight lookup table: the maximal independent set based batch-
ing strategy in Section III-C, and the unified assignment algorithm
in Section III-D. Finally, we introduce some techniques

B. Lightweight Lookup Table for Conflict Detection

In this subsection, we present the construction of our lightweight
lookup table, which is essential for DRV checking and for selecting
batches for concurrent assignment.

For each iroute, we define its conflict set as the collection of
iroutes that may violate design rules when assigned to the same
tracks. Identifying the conflict set of an iroute is critical in track
assignment, as it allows us to assess how many design rule violations
an iroute may incur when assigned to different tracks. Furthermore,
conflicting iroutes cannot be assigned simultaneously, as this could
interfere with the convergence of the algorithm. R-tree [33] is a
widely used data structure for spatial index queries in detailed
routing and track assignment [28]. However, R-tree is not ideal
for conflict detection in track assignment problems due to its long
runtime and significant memory usage. To address this issue, we
propose a lightweight lookup table to efficiently identify conflict
sets, thereby reducing both runtime and memory consumption.
Unlike R-tree, which performs poorly on GPUs, our lookup table is
highly efficient and easily implemented on GPU architectures

For simplicity, we take the metal short rule as an example for
illustration. In other words, the conflict set for an iroute consists
of all other iroutes that share at least one common GCell with it.
Our algorithm can be easily extended to handle additional design
rules by increasing the size of the conflict region. In Figure 6, we
have 5 iroutes within the same panel on the same metal layer : i1
starts at G1 and ends at G3, i2 starts at G1 and ends at G4, i3
starts at G2 and ends at G3, i4 starts at G1 and ends at G2 and i5
starts at G3 and ends at G4. We take i3 as an example and try to
identify its conflict set. i3 may have DRV with i1 in {G2, G3}, i2
in {G2, G3}, i4 in {G2} and i5 in {G4}, respectively. Therefore,
the conflict set of i3 is {i1, i2, i4, i5}. These iroutes in the conflict
set of i3 can be classified into two categories: i1, i3 and i5 have at
least one endpoint in the GCells overlapped with i3 ({G2, G3}). i2
has no endpoint in the the GCells overlapped with i3. Our proposed
lookup table MG,I and MI,I are designed to identify conflict iroutes

𝐺! 𝐺" 𝐺# 𝐺$GCells

Iroutes

𝒊𝟏
𝒊𝟐
𝒊𝟑
𝒊𝟒
𝒊𝟓

𝑴𝑮,𝑰
𝒊𝟏
𝒊𝟐
𝒊𝟒

𝒊𝟑
𝒊&

𝒊𝟏
𝒊𝟑
𝒊𝟓

𝒊𝟐
𝒊𝟓

𝑴𝑰,𝑰 𝒊𝟏 𝒊𝟐 𝒊𝟑 𝒊𝟒 𝒊𝟓

𝒊'

Fig. 6 An example of our lightweight lookup table.

of these two categories, respectively. We next explain how to build
MG,I and MI,I and how they work in detail.

Let the panel in which iroute i runs be denoted as pi of layer li.
The start GCell of iroute i is denoted by Gsi , and the end GCell
of iroute i is denoted by Gei . It is easy to filter out iroutes in the
same panel on the same layer, so we only talk about iroutes in the
same panel on the same layer. For another iroute j, it will belong
to the conflict set of iroute i if it satisfies the following Eq. (2):

si ≤ ej and ei ≥ sj (2)

The Eq. (2) is satisfied if and only if Eq. (3a) or Eq. (3b) is satisfied:

si ≤ sj ≤ ei or si ≤ ej ≤ ei (3a)

sj < si and ej > ei (3b)

Eq. (3a) describes that iroute j has at least one endpoint in the
GCells overlapped with iroute i, and Eq. (3b) describes that iroute j
has no endpoint in the GCells overlapped with iroute i. We construct
the lightweight lookup tables MG,I to handle Eq. (3a), and MI,I

to handle Eq. (3b), respectively.
As shown in Algorithm 1, we first construct the lookup table

MG,I on the CPU. In this table, we store the iroutes that correspond
to each GCell, where the GCell serves as either the starting or the
ending point.

MG,I (g) = {i | Gsi = g or Gei = g} (4)

Then, using MG,I , we construct the lookup table MI,I on the CPU.
This second table stores the set of iroutes that satisfy Eq. (3b) for
each iroute.

MI,I (i) = {j | sj < si and ej > ei} (5)

In general, for an iroute i that starts at Gs and ends at Ge, its conflict
set is given by:

MG,I(Gs)∪MG,I(Gs+1)∪ · · · ∪MG,I(Ge)∪MI,I(i) \ {i} (6)

Figure 6 illustrates an example of our lightweight lookup table.We have five iroutes (i1, i2, i3, i4, i5) in the same panel with four
GCells. Let G = {G1, G2, G3, G4} and I = {i1, i2, i3, i4, i5}. For
example, i1 starts at G1 and ends at G3, i2 starts at G1 and ends at
G4, and so on. We construct the lookup tables MG,I and MI,I for
this scenario. MG,I = {G1 → {i1, i2, i4}, G2 → {i3, i4}, G3 →

Algorithm 1: Lookup Table MG,I Construction (CPU)
Input: set of GCells G, set of iroutes I
Output: lookup table from GCells to iroutes MG,I

1 for iroutei ∈ I do
2 si, ei ← GetInfo(iroutei)
3 Add(MG,I , Gsi , iroutei)
4 if si 6= ei then
5 Add(MG,I , Gei , iroutei)
6 end
7 end

Algorithm 2: Lookup Table MI,I Construction (CPU)
Input: set of GCells G, set of iroutes I , mapping table

MG,I

Output: lookup table from iroutes to iroutes MI,I

1 for iroutei ∈ I do
2 si, ei ← GetInfo(iroutei)
3 for id← si to ei do
4 for iroutej ∈MG,I(Gid) do
5 sj , ej ← GetInfo(iroutej)
6 if sj = id and ej < ei then
7 Add(MI,I , iroutej , iroutei)

{i1, i3, i5}, G4 → {i2, i5}}. MI,I = {i1 → ∅, i2 → ∅, i3 →
{i2}, i4 → ∅, i5 → ∅}. Therefore, the conflict set of i3 is

MG,I (G2) ∪MG,I (G3) ∪MI,I (i3) \ {i3} (7a)

={i3, i4} ∪ {i1, i3, i5} ∪ {i2} \ {i3} (7b)

={i1, i2, i4, i5} (7c)

We will leverage these lookup tables to perform DRV checking
efficiently. Note that our lookup table can be easily stored on GPU,
and the DRV checking method can be implemented on the GPU for
enhanced performance.

Algorithms 3 and 4 demonstrate how to perform DRV checking
with our lightweight lookup table. We compute the DRVL cost
between ir1 and ir2 for all possible positions of ir2 in Algorithm 3.
For simple design rules like the metal short rule, this DRV checking

Algorithm 3: UpdateCT (GPU)
Input: iroute to apply solution ir1, iroute to update cost

table ir2, cost table CT , set of candidate tracks T ,
set of design rule to check R, boolean variable
isAdd

1 Function UpdateCT(ir1, ir2, CT, T,R, isAdd):
2 for t ∈ T do
3 for rule ∈ R do
4 costDRV ← GetDRVLCost(ir1, ir2, t, rule)
5 if isAdd = True then
6 AddCost(CT, t, costDRV)
7 end
8 if isAdd = False then
9 SubCost(CT, t, costDRV)

10 end
11 end
12 end

Algorithm 4: Apply Solution (GPU)
Input: iroute to apply solution ir, lookup table MG,I ,MI,I ,

cost table CT , set of design rule to check R, boolean
variable isAdd (True for assign and False for rip up)

1 Function ApplySolution(ir,MG,I ,MI,I , CT, isAdd):
2 s, e← GetInfo(ir)
3 for id← s to e do
4 for iroutej ∈MG,I(Gid) do
5 sj , ej , T ← GetInfo(iroutej)
6 if sj = id or sj < s then
7 UpdateCT(ir, iroutej , CT, T,R, isAdd)
8 end
9 end

10 end
11 for iroutej ∈MI,I(ir) do
12 T ← GetInfo(iroutej)
13 UpdateCT(ir, iroutej , CT, T,R, isAdd)
14 end
15 return

is efficient and can be performed on the GPU. Algorithm 4 identifies
the target iroutes ir2 that are needed for DRV checking with ir1.
The conflict set searching algorithm is divided into two parts: Lines
3-8 in Algorithm 4 find the iroutes satisfying Eq. (3a), and Lines 9-
11 identify the iroutes satisfying Eq. (3b). For more complex design
rules like the parallel-run spacing rule, EOL spacing rule, and cut
spacing rule, we only need to check these rules in UpdateCT and
expand the conflict set searching region by one GCell.

C. Maximal Independent Set based Batching Strategy with
Lightweight Lookup Table

A typical multi-threaded track assignment algorithm on a CPU
relies on panel-level parallelism [10], [28]. It treats the assignment
of iroutes in different panels as independent tasks, performing
these assignments concurrently. However, this naive panel-level
parallelism has two major issues:
• Inter-track design rules, such as the parallel-run spacing rule,

prevent parallel assignment between adjacent panels.
• There are thousands of iroutes within a panel, making insuffi-

cient parallelism for GPU with tens of thousands of threads.
In practice, we observe that an optimal parallel strategy should

follow two key principles:
• Iroutes that may have design rule violations should not be

assigned concurrently.
• Iroutes with higher priority (based on iroute length or other

criteria) should be assigned before those with lower priority.
These principles ensure that parallel algorithms converge effec-

tively and yield high-quality results. In our proposed scheme, the
assignment process is divided into several passes. In each pass, we
select a batch of iroutes to assign and re-assign them concurrently.

To improve parallelism, we introduce a parallel maximal inde-
pendent set (MIS)-based batching strategy inspired by Blelloch’s
algorithm [34]. This strategy selects a batch of iroutes to assign in
a single pass. Algorithm 5 describes the selection process in detail.
The core idea is to treat each iroute as a node, with an edge between
two iroutes if they may violate a design rule when assigned to the
same track. An independent set in the iroute graph ensures that no
two iroutes that may have a design rule violation are assigned to the
same track simultaneously. In practice, we do not explicitly construct

Algorithm 5: MIS-Based Selection (GPU)
Input: set of iroutes I , mapping table MG,I ,MI,I , priority

cost table K
Output: set of iroutes S to assign in this pass

1 Function MISBasedSelection(I,MG,I ,MI,I ,K):
2 S ← ∅
3 for each thread 0 ≤ i < |I| do . selection kernel
4 iroutei ← GetElement(I, i)
5 flagi ← True
6 si, ei ← GetInfo(iroutei)
7 keyi ← K (iroutei)
8 for id← si to ei do
9 for iroutej ∈MG,I(Gid) do

10 keyj ← K (iroutej)
11 if keyi < keyj then
12 flagi ← False
13 end
14 end
15 end
16 for iroutej ∈MI,I(iroutei) do
17 keyj ← K (iroutej)
18 if keyi < keyj then
19 flagi ← False
20 end
21 end
22 if flagi = True then
23 S ← S ∪ {iroutei}
24 I ← I \ {iroutei}
25 end
26 end
27 return S

this graph, but instead, we implicitly access it using our lookup table.
Lines 9-10 and 13-14 ensure that only the iroute iroutei with the
highest priority among the iroutes in its conflict set is added to
the set S. To satisfy the principles mentioned earlier, we select the
maximal independent set, taking into account iroute priority, as the
set of iroutes for re-assignment in each pass to ensure both efficiency
and effectiveness.

Note that the selection task is fully parallelizable on a GPU,
as each iroute can be processed independently. Since the priority
value keyi of each iroute is updated after a pass of assignment, our
method can achieve a higher degree of parallelism while maintaining
dynamic ordering strategies. Compared with the naive inter-panel
parallel strategy used in previous works, our method allows for intra-
panel parallelism, improving both parallelism and efficiency.

We illustrate our batching strategy using Figure 6 as an example.
Suppose the iroute priority values satisfy key2 > key1 > key4 >
key5 > key3 for simplicity. In the first pass, i2 is selected because
it may conflict with i1, i3, i4, i5 and has the largest key value. We
then remove i2 from the candidate set I . In the second pass, i1 is
selected. In the third pass, i4 and i5 are selected, and in the last pass,
i3 is selected. With our approach, we can assign all 5 iroutes in the
same panel in 4 passes, while a naive inter-panel parallel strategy
would require 5 passes to assign them.

D. Unified Track Assignment Algorithm

With the aforementioned components, we summarize our pro-
posed unified track assignment algorithm on GPU in Algorithm 6

𝒊𝒊 Selected in this pass Selected in previous pass 𝒊 Unselected

(a) Iroute selected in this / previous / later pass

𝒊𝟏

𝒊5

𝒊3

𝒊4

𝒊2

(b) Pass 1

𝒊𝟏

𝒊5

𝒊3

𝒊4

𝒊2

(c) Pass 2

𝒊𝟏

𝒊5

𝒊3

𝒊4

𝒊2

(d) Pass 3

𝒊𝟏

𝒊5

𝒊3

𝒊4

𝒊2

(e) Pass 4

Fig. 7 An example of our proposed maximal independent set-based
batching strategy using the iroutes from Figure 6.

that is general for initial assignment and rip-up and re-assignment.
The algorithm runs iteratively and assign (or re-assign) a batch of
iroutes in each iteration.

In each iteration of our track assignment, we attempt to assign
(in the initial assignment iteration) or rip-up and re-assign (in the
DRV reduction iteration) each iroute at most once. In each pass, we
first select a batch of iroutes to assign concurrently, as described
in Lines 2-7 of Algorithm 6. We use various ordering strategies to
find the best solution, aiming to minimize the cost. In the initial
assignment stage, the iroute length is used as the priority key for
each iroute, while in the DRV reduction stage, the iroute DRVL cost
is used as the priority key. We then launch the assign kernel on the
GPU to assign a track to each iroute in the selected batch (Lines
8-19). Lines 11-13 retrieve the basic information for the iroute to
be assigned, and Lines 14-19 find the best track with the minimal
cost. Finally, we store the solution of each iroute and update the cost
table (Lines 20-21). The entire process is fully parallelized on the
GPU, with each thread assigned to one iroute. The initial assignment
process continues until every iroute has been assigned. The rip-up
and re-assignment process continues until no iroutes with DRVL
violations remain unassigned in the current iteration. For the initial
assignment, we set α = 1, β = 0.05, and γ = 0.05. In the rip-up
and re-assignment stage, we set α = 1, β = 32, and γ = 32 for
further DRV reduction.

E. Detailed Routing Consideration

To improve the quality of results after detailed routing, we need
the objective function (1) has a good correlation with the detail
routing result. In the subsection, we will explain the wirelength cost
WL first, and then explain the details of the extra penalty A.

We define the iroutes that belong to the same net on adjacent
layers and are linked to a particular iroute as its neighboring iroutes.
An iroute is considered to be connected to its neighbors through vias.

Algorithm 6: Unified Track Assignment (GPU)
Input: set of GCells G, set of iroutes I , mapping table

MG,I ,MI,I , cost table CT
Output: track assignment solution

1 while True do
2 if doing initial assignment then
3 S ← MISBasedSelection(I,MG,I ,MI,I , L)
4 . Use the length of iroutes as the priority cost
5 end
6 if doing re-assignment then
7 S ← MISBasedSelection(I,MG,I ,MI,I , CT)
8 . Use DRVL cost of iroutes as the priority cost
9 end

10 if S = ∅ then
11 return
12 end
13 for each thread 0 ≤ i < |S| do . assign kernel
14 iroutei ← GetElement(S, i)
15 if doing re-assignment then
16 ApplySolution(iroutei,MG,I ,MI,I , CT, False)
17 . Apply the cost update of ripping up iroutei
18 end
19 li, pi ← GetInfo(iroutei)
20 Ti ← GetTracks(li, pi)
21 minCost←∞
22 for t ∈ Ti do
23 costt ← GetCost (t, CTi)
24 if costt < minCost then
25 minCost← costt
26 bestTrack ← t
27 end
28 end
29 SetSolution(iroutei, bestTrack)
30 ApplySolution(iroutei,MG,I ,MI,I , CT,True)
31 . Apply the cost update of assignment of iroutei
32 end
33 end

M4

M3

M5

𝒊𝟏

𝒊𝟐

𝒊𝟑
𝒊𝟒𝒗𝟐

𝒗𝟑

𝒗𝟏

Fig. 8 Iroute and its neighbors.

These neighboring iroutes are used to estimate the total wirelength
in detailed routing result. For example, in Figure 8, i1 and i3 and
i4 are the neighbors of i2. Notably, we use relative wirelength cost
instead of actual wirelength cost in the objective Eq. (1) because
they share the same assignment solution. When i2 is assigned to t1,
we gives 0 as its wirelength cost in the objective Eq. (1). i1 and i3

pin pin connection

good assignment
bad assignment

(a)
assigned iroute iroute alignment

(b)

Fig. 9 (a) Pin connection and (b) iroute alignment.

TABLE I Benchmarks statistics.
ISPD18 #nets GCell Grid ISPD19 #nets GCell Grid

test1 3153 67× 68 test1 3153 97× 98

test2 36834 201× 228 test2 72410 392× 581

test3 36700 247× 346 test3 8953 130× 130

test4 72401 403× 592 test4 151612 518× 534

test5 72394 613× 619 test5 29416 302× 302

test6 107701 354× 571 test6 179863 883× 905

test7 179863 883× 905 test7 358720 1001× 1053

test8 179863 883× 905 test8 537577 1138× 1202

test9 178857 522× 606 test9 895253 1433× 1337

test10 182000 522× 606 test10 895253 1433× 1337

comes from the left side on M5 and M3, respectively, while only i4
comes from the right side on M3. When we move i2 from track t1
to track t2, we have to lengthen i1 and i3 by one track step s, and
shorten i4 by s, and our total wirelength get s more. To describe
the wirelength difference, we gives s and 2s as the wirelength cost
of i2 assigned to track t2 and t3, respectively.

To further improve the quality of detailed routing results, we
introduce an extra penalty to reward assignment strategies that
benefit detailed routing. Pin connection strategy means that iroutes
are encouraged to be assigned close to their respective pins because
it will prevent make detours to connect pins and it is good for
routability. Figure 9(a) demonstrates an example of pin connection.
The pin is located at the first track, so assigning the corresponding
iroute to the first track is a pin connection pattern and assigning
it to other tracks is not a pin connection pattern. Therefore, we
give the solution of the first track a negative extra penalty to
encourage our framework to assign it to the first track and achieve
pin connection. Iroute alignment strategy means that an iroute is
encouraged to be assigned to same track as its directly connected
iroutes in the same net. Misaligned iroutes may require additional
vias or wires to achieve connection and harm routability. Figure 9(b)
shows an example of iroute alignment. The assigned iroute in the
same net is located at the first track, so assigning the corresponding
iroute to the first track satisfies iroute alignment. In our algorithm
implementation, we also assign a negative extra penalty to encourage
iroute alignment.

IV. EXPERIMENTAL RESULTS

The benchmarks used in our experiments are sourced from
the ISPD-2018 and ISPD-2019 routing contests. Table I provides
detailed information about these benchmarks.

We implemented our track assignment using C++, CUDA, and
OpenMP [35]. To align with ISPD-2018 [29] and ISPD-2019 [30]

contest, the CPU utilized 8 threads during the experiments. We
integrated our framework into TritonRoute-WXL [28] to do global
routing and detailed routing, and compare our method with the
original TritonRoute-WXL flow. We will first present our main
comparison with TritonRoute-WXL and then we will show the
ablation studies on our proposed lookup table and batching strategy.
All experiments were conducted on a Linux machine equipped with
a 64-core AMD EPYC 7542 32-Core Processor running at 2.90 GHz
and an NVIDIA 3090 GPU.

A. Main Comparison with TritonRoute-WXL

We compare wirelength, via count, DRV count, runtime of track
assignment, runtime of track assignment and detailed routing, and
the peak memory usage of TritonRoute-WXL with our proposed
framework in Table II. Our method achieves approimately a 20×
speedup in track assignment runtime and a 3.7% speedup in the
overall runtime of track assignment and detailed routing. In par-
ticular, for large cases (ispd19 test6 to ispd19 test10), our method
simultaneously achieves better wirelength, fewer vias, fewer DRVs,
shorter runtime, and lower peak memory usage.

Quality improvements arise from our more accurate estimation
model and appropriate weights selection. These provide the detailed
router with good initial solution with flexible enough search space.
The runtime improvement stems from our fast DRV detection
method and our maximal independent set based batching strategy
with higher parallelism. Lower peak memory usage is achieved
through our highly sparse and lightweight lookup table implemen-
tation.

Figure 10 shows a comparison of the runtime and peak memory
usage between TritonRoute-WXL and our method as the number
of nets increases. Our framework demonstrates superior scalability
with the growing problem size.

B. Ablation Study

To evaluate the effectiveness of our proposed lightweight lookup
table, we selected the three largest designs from the ISPD-2019
benchmark suite and collected the statistics of |G|, |I|, |MG,I | and
|MI,I |. As shown in Table III, for these designs, we observe
that |MG,I | ≈ |G| and |MI,I | ≈ |I|. This relationship allows
us to construct our lookup table with linear space complexity.
Furthermore, when querying the conflict set of an iroute which spans
L GCells, our lookup table requires only O (L) steps. We observe
that a high-quality placer tends to place cells related to the same
net in close proximity. Meanwhile, an effective global router aims to
minimize wirelength and avoid overflow (demand exceeds capacity)
as much as possible. As a result, the total length of global routes
and the number of global routes passing through the same GCell are
inherently limited. Due to these issues, our lookup table is sparse
enough to provide lightweight conflict detection.

To demonstrate the effectiveness of our novel maximal indepen-
dent set based batching strategy, we compare our method with
the naive inter-panel parallel strategy used in prior works. The
evaluation is conducted on the ten largest designs from the ISPD-
2018 and ISPD-2019 benchmark suites. As shown in Table IV,
our algorithm reduces the number of passes by approximately 48
times on average compared to previous methods. This indicates that
our batching strategy can distribute all assignment tasks into 48
times fewer batches on average, significantly improving workload
balance and reducing the maximal workload per single thread.
This improvement is particularly critical and effective in our GPU-
accelerated framework, as the computing power of a single GPU

TABLE II Comparison between TritonRoute-WXL and our framework for routed wirelength (rWL/um), routed via count (#rVia), routed
DRV count (#rDRV), track assignemnt runtime (TA/s), track assignment + detailed routing runtime (TA+DR/s), cpu peak memory usage
(CMem/MB) and gpu peak memory usage (GMem/MB).

Design†
TritonRoute-WXL [28] Ours

rWL #rVia #rDRV TA TA+DR CMem rWL #rVia #rDRV TA TA+DR CMem GMem
18-1 85473 36081 0 1.69 15.71 782 85448 36048 0 0.09 13.8 864 28
18-2 1561031 376987 0 9.56 118.98 1701 1561129 377026 0 0.55 124.84 1658 234
18-3 1748109 378138 0 10.12 648.4 1811 1748736 378747 0 0.62 420.62 1748 236
18-4 2608328 754787 0 16.57 235.17 3681 2608669 752847 0 0.84 219.82 2655 452
18-5 2739659 927176 0 26.67 305.08 3626 2739610 925719 0 1.16 253.26 2940 504
18-6 3517795 1396704 0 31.39 412.5 4623 3518040 1395092 0 1.54 398.48 3812 706
18-7 6419471 2282189 0 52.04 956.45 6541 6419961 2279871 0 2.59 903.08 5419 1206
18-8 6450850 2362426 0 53.83 1048.03 6286 6451131 2360074 0 2.64 935.1 5539 1230
18-9 5387863 2343511 0 54.42 728.26 6527 5387732 2341826 0 2.54 679.89 5344 1174
18-10 6826642 2565687 0 70.36 1098.66 7458 6826799 2563931 0 2.88 1085.88 5832 1320
19-1 62897 38495 0 2.88 38.61 831 62934 38516 0 0.11 41.85 961 62
19-2 2460494 864082 0 27.11 619.84 3502 2460673 865270 0 1.28 619.7 3030 878
19-3 82227 64036 0 3.36 194.02 1019 82202 63953 0 0.10 153.85 1084 78
19-4 6811716 1176847 3 62.25 1981.41 3853 6807715 1174955 1 2.13 2041.62 3374 462
19-5 982248 154287 0 4.69 61.62 920 981781 153625 0 0.24 73.86 960 76
19-6 6513144 2060921 0 58.48 1296.86 7423 6512618 2056949 0 3.27 1245.45 5571 2226
19-7 12042993 3896349 0 119.18 2827.18 12130 12042138 3892269 0 6.55 2740.74 8969 4626
19-8 18494009 6425825 0 190.82 3324.28 16987 18492141 6417225 0 9.97 3227.28 13600 6652
19-9 27964340 10673288 0 325.11 5460.91 28396 27962026 10660709 0 16.26 5325.43 21569 11250
19-10 27607518 10038100 4 330.99 6357.13 26866 27605735 10024519 4 15.73 6238.65 20985 11300

Average 7018340 2440796 0.35 72.58 1386.46 7253.15 7017860 2437959 0.25 3.55 1337.16 5795.7 2235.0
Avg. ratio 1.000 1.001 1.400 20.418 1.037 1.251 1.000 1.000 1.000 1.000 1.000 1.000 -
† Design name 18-x and 19-x denote ISPD18-testx and ISPD19-testx, respectively.

TABLE III |G|, |I|, |MG,I |, |MI,I |, |MG,I |/|G| and |MI,I |/|I| of three largest ISPD-2019 testcases.
|G| |I| |MG,I | |MI,I | |MG,I |/|G| |MI,I |/|I|

19-8 12310884 7152465 9883197 3984174 0.80 0.56
19-9 17243289 11855540 16368264 6501760 0.95 0.55

19-10 17243289 11152369 15602001 6430225 0.90 0.58

TABLE IV Comparison between panel parallelism and maximal independent set based parallelism.
Design 18-6 18-7 18-8 18-9 18-10 19-6 19-7 19-8 19-9 19-10 Average
#iroute 1561781 2540095 2611071 2591612 2807037 2309206 4294027 7152465 11855540 11152369 4887520

#pass panel 2844 3597 3701 3518 3813 3945 5326 6221 7898 8237 4910
MIS 121 115 106 90 104 127 108 88 104 97 106

#iroute / #pass panel 549 706 705 737 736 585 806 1150 1501 1354 883
MIS 12907 22088 24633 28796 26991 18183 39760 81278 113996 114973 48360

thread is limited. By minimizing the workload imbalance, our
approach enhances the overall efficiency of the framework.

104 105 106

#Nets

0

100

200

300

R
u

n
ti

m
e

(s
)

TritonRoute-WXL

Ours

(a)

104 105 106

#Nets

0

10000

20000

P
ea

k
M

em
or

y
U

sa
ge

(M
B

) TritonRoute-WXL

Ours - CPU Mem

Ours - GPU Mem

(b)

Fig. 10 (a) Runtime and (b) peak memory usage scaling with the
number of nets.

V. CONCLUSION

In this paper, we present a track assignment framework that
generates high-quality track assignment solutions efficiently on

the ISPD-2018 and ISPD-2019 benchmark suites. We introduce
a new GPU-friendly, lightweight lookup table that improves the
time and space complexity of conflict set detection for each iroute,
outperforming traditional R-tree methods. This data structure en-
ables efficient handling of various design rules concurrently on the
GPU. Additionally, we employ a maximal independent set-based
batching strategy to generate batches of iroutes for simultaneous
assignment, ensuring intra-panel parallelism and contributing to
significant speed-up in the track assignment process. Compared to
the state-of-the-art router, TritonRoute-WXL, our method achieves
competitive routing solutions, delivering a 20× speedup in track
assignment runtime, and a 25% reduction in CPU peak memory
usage.

ACKNOWLEDGEMENTS

This work was supported in part by the Natural Science Foun-
dation of Beijing, China (Grant No. Z230002) and the 111 project
(B18001).

REFERENCES

[1] M.-C. Kim, J. Hu, D.-J. Lee, and I. L. Markov, “A simplr method
for routability-driven placement,” in 2011 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2011, pp. 67–73.

[2] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “Replace: Advancing
solution quality and routability validation in global placement,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 9, pp. 1717–1730, 2019.

[3] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z.
Pan, “Dreamplace: Deep learning toolkit-enabled gpu acceleration for
modern vlsi placement,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 40, no. 4, pp. 748–761, 2021.

[4] S. Batterywala, N. Shenoy, W. Nicholls, and H. Zhou, “Track assign-
ment: a desirable intermediate step between global routing and detailed
routing,” in IEEE/ACM International Conference on Computer Aided
Design, 2002. ICCAD 2002., 2002, pp. 59–66.

[5] D. Wu, R. Mahapatra, J. Hu, and M. Zhao, “Timing driven track routing
considering coupling capacitance,” in Proceedings of the ASP-DAC
2005. Asia and South Pacific Design Automation Conference, 2005.,
vol. 2, 2005, pp. 1156–1159 Vol. 2.

[6] M. Cho, H. Xiang, R. Puri, and D. Z. Pan, “Track routing and
optimization for yield,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 27, no. 5, pp. 872–882, 2008.

[7] Z. Qi, Q. Zhou, Y. Jia, Y. Cai, Z. Li, and H. Yao, “A novel fine-
grain track routing approach for routability and crosstalk optimization,”
in 2011 12th International Symposium on Quality Electronic Design,
2011, pp. 1–6.

[8] X. Gao and L. Macchiarlo, “Track routing optimizing timing and yield,”
in 16th Asia and South Pacific Design Automation Conference (ASP-
DAC 2011), 2011, pp. 627–632.

[9] B.-T. Lai, T.-H. Li, and T.-C. Chen, “Native-conflict-avoiding track
routing for double patterning technology,” in 2012 IEEE International
SOC Conference, 2012, pp. 381–386.

[10] M.-P. Wong, W.-H. Liu, and T.-C. Wang, “Negotiation-based track
assignment considering local nets,” in 2016 21st Asia and South Pacific
Design Automation Conference (ASP-DAC), 2016, pp. 378–383.

[11] L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-based
performance-driven router for fpgas,” in Third International ACM
Symposium on Field-Programmable Gate Arrays, 1995, pp. 111–117.

[12] J.-R. Gao, P.-C. Wu, and T.-C. Wang, “A new global router for
modern designs,” in 2008 Asia and South Pacific Design Automation
Conference, 2008, pp. 232–237.

[13] Y. Xu, Y. Zhang, and C. Chu, “Fastroute 4.0: Global router with
efficient via minimization,” in Proceedings of the 2009 Asia and South
Pacific Design Automation Conference, ser. ASP-DAC ’09. IEEE
Press, 2009, p. 576–581.

[14] J. He, U. Agarwal, Y. Yang, R. Manohar, and K. Pingali, “Sproute 2.0:
A detailed-routability-driven deterministic parallel global router with
soft capacity,” in 2022 27th Asia and South Pacific Design Automation
Conference (ASP-DAC), 2022, pp. 586–591.

[15] G. Liu, Z. Zhuang, W. Guo, and T.-C. Wang, “Rdta: An efficient
routability-driven track assignment algorithm,” in Proceedings of the
2019 Great Lakes Symposium on VLSI, ser. GLSVLSI ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 315–318.
[Online]. Available: https://doi.org/10.1145/3299874.3318026

[16] Y. Qi, Z. Gan, J. Ding, Z. Fu, M. Gong, and W. Yu, “Track assignment
using gradient indication and simulated annealing,” in 2024 IEEE
International Symposium on Circuits and Systems (ISCAS), 2024, pp.
1–5.

[17] Y. Jing, L. Yang, Z. Zhuang, G. Liu, X. Huang, W.-H. Liu, and T.-C.
Wang, “Spta: A scalable parallel ilp-based track assignment algorithm
with two-stage partition,” in 2022 IFIP/IEEE 30th International Con-
ference on Very Large Scale Integration (VLSI-SoC), 2022, pp. 1–6.

[18] D. Shi and A. Davoodi, “Trapl: Track planning of local congestion for
global routing,” in 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC), 2017, pp. 1–6.

[19] A. B. Kahng, L. Wang, and B. Xu, “Tritonroute: The open-source
detailed router,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 40, no. 3, pp. 547–559, 2021.

[20] Z. Guo, T.-W. Huang, and Y. Lin, “Heterocppr: Accelerating common
path pessimism removal with heterogeneous cpu-gpu parallelism,” in
2021 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). ACM, 2021.

[21] S. Lin, J. Liu, T. Liu, M. D. F. Wong, and E. F. Y. Young, “Novelrewrite:
node-level parallel aig rewriting,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, ser. DAC ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 427–432.
[Online]. Available: https://doi.org/10.1145/3489517.3530462

[22] Z. Guo, F. Gu, and Y. Lin, “Gpu-accelerated rectilinear steiner
tree generation,” in Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design, ser. ICCAD ’22. New York,
NY, USA: Association for Computing Machinery, 2022. [Online].
Available: https://doi.org/10.1145/3508352.3549434

[23] S. Lin, J. Liu, E. F. Y. Young, and M. D. F. Wong, “Gamer: Gpu-
accelerated maze routing,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 42, no. 2, pp. 583–
593, 2023.

[24] S. Liu, Y. Pu, P. Liao, H. Wu, R. Zhang, Z. Chen, W. Lv, Y. Lin,
and B. Yu, “Fastgr: Global routing on cpu–gpu with heterogeneous
task graph scheduler,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 42, no. 7, pp. 2317–2330, 2023.

[25] C. Zhao, Z. Guo, R. Wang, Z. Wen, Y. Liang, and Y. Lin, “Helem-
gr: Heterogeneous global routing with linearized exponential multiplier
method,” in 2024 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). ACM, 2024.

[26] Y. Du, Z. Guo, Y. Lin, R. Wang, and R. Huang, “Fusion of global
placement and gate sizing with differentiable optimization,” in 2024
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD). ACM, 2024.

[27] J. Mai, C. Zhao, Z. Zhang, Z. Di, Y. Lin, R. Wang, and R. Huang,
“Legalm: Efficient legalization for mixed-cell-height circuits with
linearized augmented lagrangian method,” in Proceedings of the 2025
International Symposium on Physical Design, ser. ISPD ’25. New
York, NY, USA: Association for Computing Machinery, 2025, p.
22–30. [Online]. Available: https://doi.org/10.1145/3698364.3705356

[28] A. B. Kahng, L. Wang, and B. Xu, “Tritonroute-wxl: The open-source
router with integrated drc engine,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 41, no. 4, pp.
1076–1089, 2022.

[29] S. Mantik, G. Posser, W.-K. Chow, Y. Ding, and W.-H. Liu,
“Ispd 2018 initial detailed routing contest and benchmarks,” in
Proceedings of the 2018 International Symposium on Physical
Design, ser. ISPD ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 140–143. [Online]. Available:
https://doi.org/10.1145/3177540.3177562

[30] W.-H. Liu, S. Mantik, W.-K. Chow, Y. Ding, A. Farshidi, and
G. Posser, “Ispd 2019 initial detailed routing contest and benchmark
with advanced routing rules,” in Proceedings of the 2019 International
Symposium on Physical Design, ser. ISPD ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 147–151. [Online].
Available: https://doi.org/10.1145/3299902.3311067

[31] W.-H. Liu, W.-C. Kao, Y.-L. Li, and K.-Y. Chao, “Nctu-gr 2.0:
Multithreaded collision-aware global routing with bounded-length maze
routing,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 5, pp. 709–722, 2013.

[32] S.-Y. Han, W.-H. Liu, R. Ewetz, C.-K. Koh, K.-Y. Chao, and T.-C.
Wang, “Delay-driven layer assignment for advanced technology nodes,”
in 2017 22nd Asia and South Pacific Design Automation Conference
(ASP-DAC), 2017, pp. 456–462.

[33] A. Guttman, “R-trees: a dynamic index structure for spatial searching,”
in Proceedings of the 1984 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’84. New York, NY, USA:
Association for Computing Machinery, 1984, p. 47–57. [Online].
Available: https://doi.org/10.1145/602259.602266

[34] G. E. Blelloch, J. T. Fineman, and J. Shun, “Greedy sequential maximal
independent set and matching are parallel on average,” in Proceedings
of the Twenty-Fourth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, ser. SPAA ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 308–317. [Online].
Available: https://doi.org/10.1145/2312005.2312058

[35] “OpenMP,” http://www.openmp.org/.

